THICKNESS OF THE LAYER OF LUBRICANT AND
THE RESISTANCE TO ROLLING OF CYLINDERS
IN ELASTOHYDRODYNAMIC CONTACT
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Equations for calculating the mean thickness of a layer of lubricant of cylinders in elastohydrodynamic
contact are available which have been obtained by three different methods: 1) by the method described in {1];
2) by numerical solution of the equations of the elastohydrodynamic theory of lubrication in the entrance and
exit regions and by further matching of the results with the distributed pressure in the middle part of the
contact [2]; and 3) by processing experimental results. A review of the majority of the existing equations
and new equations of the third group is given in [3]. The problem of the resistance to rolling of two elastic
cylinders separated by a layer of viscous liquid has been investigated only slightly. Inthis paper we present
equations for the average and minimum thickness of the layer of lubricant, and also for the resistance to
rolling obtained by processing the results of a direct numerical solution of the equations of the isothermal
elastohydrodynamic problem.

1. The equations of the one-dimensional isothermal problem of the elastohydrodynamic theory of lubri-
cation have the form [4]

d } dp] _ V dh, 1.1
7 | P esp (— 0 ] = (1.1)
Hy(h—1) =22 — ¢ + —?—t-jp(t) In i=tdr. (1.2)
The boundary conditions are
p(a) = ple) = (dp/dx)(c) = 0. L.3)
In addition
(pydt=a2. (1.4)

In (1.1)=(1.4) %, t, @, and ¢ refer to the half-width of the Hertz contact b = [8qR/(rE")]2, q is the load
per unit length of the cylinder, E' = EA1 — v%), E is the elastic modulus, v is Poisson's ratio, and 1/R =
1/Ry + 1/R,, where R; and R, are the radii of the cylmders The unknown contact pressure p(x) =0 is re~
ferred to the maximum Hertz pressure p, = [QE'/2mR)]!?, the profile of the gap h(x) > 0 is referred to the
thickness of the layer of lubricant hy = h(c) at the exit from the contact region, Hy = 2hyR/b%; V = 3r° (g
(y + u)/(@ER)E'R/q)?, u; and u, are the velocities of the cylinder surfaces, y, is the viscosity of the
lubricant at room pressure, Q = opj, @ is the piezocoefficient in the equation for the viscosity pu = p, exp
(aPp), D is the physical pressure, and @ and ¢ are the coordinates of the beginning and end of the region of
positive pressure. The parameters M, and c¢ are unknown and must be determined during the solution from
the additional conditions (1.3) and (1.4).

In [4] 2 numerical method is described for solving Egs. (1.1)=(1.3} in which the spline approximation of
the pressure p(x) is employed. Equations (1.1)~(1.3) in this case reduce to a system of nonlinear equations
which are solved by Newton's method. Calculations [4] show that the method is efficient.

When solving Egs. (1.1)=(1.3) over a wide range of variation of the parameters V, @, and a difficulties
arise due to the large amount of computer time required. For a number of nodes of the difference net N = 90
version on the BESM-6 computer takes about two hours.
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When Q » 1 Eq. (1.1) can be linearized {5]
#[h@e (- opl T=2) 5| = 5 &, (L.5)

2
0
where hy(x) = 1+ Hl[| x|V —1 —In(|x] + V22 —1)]0(% —1) (6 is the Heaviside function). The applica-
tion of the method described in [4]to (1.5), (1.2), and (1.3) leads to a system of linear equations. A compari-~
son of the solutions of (1.1)~(1.4) and (1.5), (1.2)~(1.4) for Q. = 7.5 and V = 0.11 is given in Fig. 1 (2 is the
pressure distribution and b is the profile of the gap). Curves 1 and 2 are the solutions of the nonlinear and
linear problems. Thecdashed curve in Fig. 1a corresponds to the Hertz pressure distribution. The table com-

pares Hpand S = (2/7) j' p(z) zdz , obtainedby solving the nonlinear system (1.1)-(1.4) (subscript 1) and the linearized
. system (1.5), and (1.2)-(1.4) (the subscript 2); Hy, is calculated by the method described in [1].

It can be seen that to determine the thickness of the layer of lubricant one can obtain good accuracy by
using the solution of the linearized system. The error in the value of § connected with the moment of the
resistance to rolling may reach 15%. Linearization of Eq. (1.1) preserves the main features of the nonlinear
problem. A second pressure maximum also appears in the solution of the linear problem for Q =10 [4]. Cal~
culation using version (1.5), and (1.2)=(1.4) for N = 90 takes 10~15 min on the BESM-6 computer.

All later results in this paper are based on the mmerical solution of the linearized system (1.5) and
(1.2)~(1.4).

2. The average thickness of the layer of lubricant, which is of considerable interest in practice, differs
only slightly from h when x = ¢ (see Fig. 1b).

In Fig. 2 the triangles represent some results of the solution of (1.5) and (1.2)-(1.4), the continuous
lines were obtained by approximating these results, line 1 corresponds to Q = 5, line 2 corresponds to Q =
10, line 3 corresponds to Q = 20, and the dashed line corresponds to the approximate result obtained in [1]:
Hy = 0.254 (VQ)%"7, The dependence of Hy on V and Q has a pronounced power form. The mean-square
approximation of 11 points (V, Q, and Hy) in the range 5 =Q = 20, 0.006 =V = 0.2, with ¢ = —2 is obtained
from the equation

H, = 0.53V06Q0.. @.1)

The maximum error of the approximation is 5%. In dimensional variables Eq. (2.1) has the form
ho/ R = 3.57(ut/B' R)®${aE')*-3(p/E’)~01,

» where u = (y + w)/ 2. For comparison we present the result obtained in [3] by processing experimental data
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TABLE 1

Q V HOI. . H02 HUO sl ' SZ
3.9 047 0261 | 0276 | 0,488 0,05 0,052
7.5 0,14 0252 | 0,258 | 0,221 0,034 0,029
724 | 0076 | 0203 | 0200 | 0,165 0,032 0,028

in(vaQ)
p 0 05

- |

_// -3 LnHO{

Fig. 2

R/ R = 5.8(pou/E’ R)*¥(aE')%(po/E')~02.
The equation [6]
ho/R = 4.05(nouw/E’ B3 {aE" )% 8(p,/E) 0.2 . 2.2)

is based on replacing the elastic bodies by 2 Winkler medium and is obtained by a special choice of the Wink-
ler constant.

In addition to the average thickness of the layer of lubricant it is also important to determine the mini~
mum thickness. On the basis of the results of a solution of (1.5) and (1.2)~(1.4) in the above range of V and
Q we obtain the following equation for Hy,j, = Hyhmin:
Hyin = 0.31V0-86Q0.52, (2.3)
In dimensional variables (2.3) has the form '
hnin/R = 2.05(pou/ E' R)*-#(aE)0-5%(po/B) 022,
The following result is obtained in [2]:
hain/R = 1,26(ou/B' R)%*(@B)"(po/E') -2,
which contradicts Egs. (1.1)<(1.4) since it does not satisfy the condition Hmin = Hmin (V. Q).

3. We will consider the problem of determining the force and moment of the resistance to rolling which
acts on umit length of the cylinder in the case of pure rolling and when the cylinders are made of the same
materials. The thickness of the layer of lubricant in dimensional variables will be represented by the equa-~
tions

2 [
h=h, + h,, h1=%+-2i3~—n%jp(t)ln{t—x}dt,
1
‘ (3.1)

c

h* 2 2
h2:_2-+ 2?{2 _—ij(t)lnit_xldt’/

a

where h* is a certain constant (Fig. 3).

A supporting force Fy = pdx, adrag resistance force Fy = p(dhy/dx), and a viscous friction force

bk th
)

~ principal moment M; with respect to the instantaneous center of rolling are

%ii dz act on an element dx of the surface of the upper cylinder. The principal vector ¥; and the

) C b by dp
Fi={pSraes [t ian 8.2)
a a
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My = — | pada. (3.8)

Substituting (3.1) into (3.2) and integrating by parts we obtain

_ iyt 1 (3.4
F,= ( R, Rz) 5 pxdz. )
Equations (3.2)=(3.4) are written in dimensional variables. If we introduce the dimensionless force

F] = FyR/(gb), the dimensionless moment Mj = M,/ (gb), and omit the primes, we obtain

F,= T S d. M —S xd
= m pzxax, 1 = prax.
As in the case of (2.1) and (2.2) we can approximate the dependence of M; on V and @ with an error of
not more than 6% by the equation

M, = 0,28(V/Q)°:54, 3.5)
We obtain for Fy
R y\0-54
, F1_014R = (Z)‘) . (3.6)
For the lower cylinder
' Fy = —F, My, = M,. . (3.7)
In dimensional variables Egs. (3.5) and (3.6) have the form
— R, .3
F ___3 01 _R +R (!"0 ) (GE’)_O'“('%,")O H (3.8)
MJE'R® = 6.02(pou/E’ RY*aE')—0-54(p,/E")03, (3.9)

In [7] results are presented of the approximation of the solution obtained in [3], from which we find
F 0.7 -
=92 27 TR, (%R) (B)™%

M,/E'R? = 18.4(pu/E'R)* ¥ (aE")-%3.

(3.10).

(3.11)
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A drawback of Egs. (3.10) and (3.11) is the fact that the effect of the load on the resistance to rolling is
ignored. This effect has been detected experimentally [8] and also by a more correct solution of the initial
equations (1.1)~(1.4).

A comparison of Eqs. (3.8) and (3.9) with experimental data [8] shows that the calculation corresponds
to experiment up to rolling speeds of the order of 5 m/sec. The index in the relation between the force of
friction and the rolling speed, calculated from the data given in [8], is ~ 0.4, and the index for the confact
pressure ~0.18-0.28.

In experiments on a disk system [8] so-called friction rolling was set up when one disk {(on which the
moment of the rolling resistance was measured) is driving while the driven disk is set so that the resistance
to rotation in its supports is practically zero. It follows from (3.7) and (3.8) that for R; = Ry, Fy = F; = 0,
while M; = My = M. For equilibrium (stationary rotation) of the driving disk some slipping of the disks and
a friction force due to this slipping are necessary. The moment of this force with respect to the axis of the .
driven disk must be M. On the driving disk the force of friction is directed in the opposite direction and
causes a twofold increase in the moment of the resistance to rolling with respect to the axis of the disk. The
moment calculated taking these factors into account for similar disks of radius R = 70 mm and width Z = 8
mm for a rolling speed u = 1 m/sec, a contact pressure py = 0.45 GN/ m?, and a temperature T = 30°C un-
der conditions of abundant lubrication with MS=20 oil is 0.113 N.m, The measured moment is 0,187 N-m. The
considerable disagreement between theory and experiment for u > 5 m/sec is obviously due to nonisothermal
flow of the lubricant.

The coordinate a of the point where the region of positive pressure begins has a small effect on the
results of the calculation if ¢ « -1, On the other hand, if ¢ » —1, the solution will depend on a. By setting
different values of a we can simulate the rolling under conditions when there is insufficient lubricant in the
contact zone (so-called low-grade lubricant or oil starvation [9]). Figure 4 shows the results of a solution of
Egs. (1.5) and (1.2)=(1.4) for several values of 8. Along the abscissa axis we have plotted the parameter [9]
p=|a+ 1] H;f/ 3 where H, = lim H, , and along the ordinate axis we have the plotted the ratio g = Hy/ H,.

The small circles correspond to Q = 5 and V = 0.1, and the triangles correspond to Q = 10 and V = 0.1,
The continuous curve is obtained by the method described in [1] in [9]. The value of a can be found experi-
mentally from the position of the boundary of the region occupied by the lubricant. As ¢ — ~1 the pressure
distribution becomes close to the Hertz solution for elastic contact [4].

The authors thank L, V, Ovsyannikov for useful discussions,
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SOME MODEL CALCULATIONS OF FRICTIONAL
RESISTANCE IN THE MOTION OF BODIES WITH
BOUNDARY LAYERS OF VARIABLE VISCOSITY

A. 8. Vasil'ev UDC 532,526

Flows when a variable viscosity is present in the boundary layer are of great interest from the applied
aspect. In the opinion of a2 number of authors [1, 2], the motions of marine animals, for which mucus emerges
as a substance reducing the viscosity of aqueous solutions, can also serve as analogs of such motions. Some
investigations devoted to these questions have been published in [3].

in the present report we give the results of a theoretical investigation of the possible decrease in fric~
tional resistance during flow of the Couette type and during steady and nonsteady flow over a flat plate when
at its surface one assigns a concentration of some substance capable of reducing the viscosity of the solution
which forms.

1. Let the viscosity vary by the law (Fig. 1)
1 for 0L|y|<t—a,
W= tohtE(y —t+a) for t—a<[y[<L,
where o is the thickness of the diffusional boundary layer; k is some number for which the relative viscosity
near the surface is minimal and equal to v/voly=4 = 1/cosh k.

First of all, let us consider flow of the Couette type. In this case

df duy . du(0)
d—u(va;,)—o’ u()=1, % =0.

The solution has the form

i
l—atpshgy—1+a)
U= .

t—a+pshk
Hence,
-1
t/ro=(1—-a+-:—_shk) ,

where 7, is the frictional stress when v = v(. One can ascertain that t/79<1 when o, k > 0. However, when
a= 0.1 and k = 1.7, which corresponds to v/voly= 1 = 0.85, the relative friction is 7/ 7y = 0.95. When a =
0.1 and k = 3(»/ vyly=1 = 0.1), 7/7¢ = 0.83; when @ = 0.1 and k = 3.7 w/voly=1 =0.05), 7/7¢ = 0.69.

Thus, an approximately threefold decrease in the viscosity near the surface is necessary for a signifi-
cant decrease in resistance which could be noticed experimentally (by 5%).

A similar result is obtained in an analysis of Poiseuille flow.
2. Let us consider the case of nonsteady motion. Imagine an infinite plate suddenly set into motion.

The equation of motion and the equation for the diffusion in the boundary layer have the form
. i .
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